In Exercises 1-18, find the indefinite integral.
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f Exerc1ses 19—26 find the indefinite integral of the trigono-
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xercises 31-38, evaluate the definite integral.
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. In Exercises 39— 44 use a symbolic integration utility to eval-
vate the integral.
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In Exercises 4548, show that the two formulas are eqmva- '
lent. : .
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In Exercises 49-52, find F’ (x).
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Approximation In Exercises 53 and 54, determine which
best approximates the area of the region between the x-axis
and the function over the given interval. (Make your selection
on the basis of a sketch of the region and not by performmg
any calculations.)

53. f(x) = sécx, [o, 1]
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Area In Exercises 55 and 56, find the area of the indicated
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57. Populatioﬁ Growth A population of bacteria is changing at

il ‘ the rate of
il dP _ 3000
I dr- 1+ 025t

‘ ‘ : where ¢ is the time in days. The initial population (when
| ¢t = 0) is 1000. Write an equation that gives the population at
any time ¢, and then find the population when ¢ = 3 days.

58. Heat Transfer Find the time required for an object to cool
from 300° to 250° by evaluating

Y I | 10 [ 1
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‘ 59. Average Price The demand equation for a product is
given by o
~ 90,000
P~ 400 + 3%

Find the average price p on the interval 40 = x = 50.

60. Sales The rate of change in sales S is inversely proportional
to time # (# > 1) measured in weeks. Find § as a function of
t if sales after 2 and 4 weeks were 200 and 300 units, respec-
tively. e

True or False In Exercises 61-64, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it 'is false.
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EXERCISES for Section 5.8 :

In Exercises 1-26, evaluate the integral.
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In Exercises 27-40, evaluate the‘ integral. (Complete the

square, if necessary.)
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In Exercises 41-44, use substitution to evalua
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In Exercises 45-48, solve the differential equs
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In Exercises 49-52, find the area of the region |
graphs of the given equations. :
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Use what you have written to guess the va
make F maximum.

b. Perform the specified integration to fin
form of F' (x). Use calculus to locate the v
make F maximum and compare the resul
in part a.

54. Approximation Determine which value be
the area of the region between the x-axis @
F(x) = 1/A/1 — x* over the given inters
(Make your selection on the basis of a sketch
not by performing any calculations.)
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35, Vertical Motion  An object is projected upward from ground
G Jevel with an initial velocity of 500 féet per second. In this
exercise, the goal is to analyze the motion of the object during
its upwar d ﬁight.

a. If air resistance is neglected, express the velocity of the

function.

b. Use the result of part a to find the position function and
determine the maximum height attained by the object.

¢. If the air resistance is proportional to the square of the
velocity, you obtain the equation

— = —(32 + kv?)

where 32 feet per second per second is the acceleration due
to gravity and k is a constant. Find- the velocity as a
function of time by solving the equation

dav
—_— dr.
f 32 + kv? f -

. Use a graphing ut111ty to graph the veloc1ty funcuon v from
part ¢ if £ = 0.001. Use the graph to approximate the time
7, at which the object reaches its maximum height.
. Use Simpson’s Rule wuh n =10 to approximate the
integral 4

0
J v(p) dt
0

where v(#) and 2, are those found in part d. This is the
approximation of the maximum height of the object.
. Explain the dlfference between the results of part b and
part e.

I OR FURTHER INFORMATION  For more information on this
c, see “What Goes Up Must Come Down; Will Air Resistance
1‘ ake It Return Sooner, or Later?” by John Lekner in the January,
982 issue of Mathematics Magazine.

Harmonic Motion A weight of mass m is attached to a
spring and oscillates with simple harmonic motion (see
figure). By Hooke’s Law we can determine that

A f \/Edt
VAT =32 m

here A is the maximum displacement, ¢ is the time and k is

2 constant. Find y as a function of ¢, given that y'= 0 when
= 0,

object as a function of time. Sketch the graph- of this
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57. a. Show that

1 4‘“d ~
01+x2x_7r.

b. Approximate the number 7 using Simpson’s Rule (with
n = 6) and the integral in part a.

58. Verify the following rules by differentiating (a > 0).
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Exercises 59-62, determine which of the given integrals

can be evaluated using the basic mtegratlon rules you have
studied so far.
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Sketch the region whose area is represented by the integral
1
j arcsin(x) dx
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and approximate its value.
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